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Forewvord

The research summarized in this report was conducted during the
last four years with the financial support of the Rational Aeronautics
and Space Administration under Research Grant Ro. NsG-242-62.

The mejority of the research performed has been reported in detail
in References 1 through 4 (see Section 6). These reports and journal
articles are available to interested readers; therefore, this final
report will not attempt to repeat the many data and results which were
reported in these references. Instead, an attempt will be made to
summarize the results and contributions and give the finer details only

for the later extensions which were not reported in these references.
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Nomenclature

a radius of a contact area, inches
b radius of constriction region, inches
d equivalent flatness deviation, inches
E modulus of elasticity, 1bf/in®
h interface conductance, h = Kéﬁ , BIU/hr-rt2-°F
3 thermal conductivity, B’I'U/h:ft-OF
L length of specimen, inches
AL equivalent length of contact resistance, inches
D contact pressure, 1lbf/in®
q rate of heat flow, BTU/hr
T radial coordinate (r' = r/b)
R resistance, ®F-hr/BTU
* Rk Aa
R dimensionless resistance, B
AT & temperature difference, O
x constriction ratio, x = a/b
4 sxial coordinate
a coefficient of linear expansion, in/in-°F
b4 elastic conformity modulus, (;5) (él)
¥ dimensionless intorstitial conazctanZe, (;2) (él)
m T
Subscripts
1 region or specimen 1
2 region or specimen 2
12 direction from metal or region 1 to region 2
21 direction from metal or region 2 to region 1
a apparent contact area
ct total value when two modes or resistances are important



interstitial substance

macroscopic constrictions or contact regions
a harmonic mean value

film resistance

microscopic constrictions or contact areas



1.0 Introduction

It is a well recognized fact that the interface between members in
contact gives rise to aresistance to the flow of heat from one member to
another. This resistance will often dominate the resistance of conductive
paths, especially in the case of apparatus located in a vacuum environment.
The investigation of the thermal contact resistance in a vacuum enviromment
has been the subject of this study.

Five years ago there was a dearth of data on the thermal contact
resistance in a vacuum environment, although a fair amount of information
on this resistance for interfaces in air was available. These data were
of little value to the space scientist because our inadequate understanding
of the problem prohibited his utilization of the available data in his
related application.

Today there exist in the literature a large amount of data from
investigations of the thermal contact for "realistic engineering type
surfaces”" in vacuum environments. However, in a large majority of these
investigations little was obtained besides numbers representing what was
thought to be the thermal resistance of the interfaces. The interfaces
vere not adequately described, nor could they be since the important
parameters were or are unknown: consequently, the messurement represculs
a unique value for a situation which cannot be repeated and therefore is
of little value for making a prediction in an actuel apparatus. In short,
many data have been cbtained at considerable expense, but these investi-
gations of "realistic engineering surfaces" have added little to our
understanding of the thermal contact resistance and to our ability to

predict the regigtance of joints in other physical situations.



On the other hand, the present investigation has not made any
attempt to perform tests of realistic engineering surfaces. It was
designed with the primary obJjective of increasing our understanding
of the basic mechanisms governing the thermal contact resistance. It
is believed that this type of approach will actually result in better
success at predicting the resistance of actual interfaces and clearly
indicates situations where accurate predictions will be difficult. In
essence a better understanding of the importance and effects of the many
parameters is obtained, and few problems contain as many variables &s are
inherent in the thermal contact resistance problem.

A review of the literature on thermel contact resistance is given
in Ref. 1. Only a few pertinent references are given in this report.

A rather extensive list of references concerned with the subject was

compiled by Atkins [5].%

™
Numbers in brackets [ ] indicate references listed in Section 7.



2.0 The Mechanism of Heat Transfer at an Interface

The resistance of interfaces is often believed to result in a
discontinuity in the temperature distribution at the interface.
However, careful measurements usually reveal that the disturbances
caused by an interface extend into the region a distance which is
comparable to its dimensions. Thus, the resistance in many cases is
not a contact resistance but a constriction resistance caused by con-
stricting the heat flow as it passes through the interface. This thermal
resistance is often rather loosely defined and carelessly measured which
is one of the causes of discrepancies.

In general, a thermal resistance can only be evaluated between
isothermal surfaces bounding an imeginary adiabatic heat flow tube. The
thermal resistance between two such isothermal surfaces Al and A2 is by

definition:
’Tl" 2’

k_/l@?-
Al. on

vhere n is the normal to the surface and k the thermal conductivity.

(2.1)

Let us assume that the region bounded by Al, A2 and the heat flow tube
is continuous, i.e., free from interfaces or non-perfect joints. I

thic ctream tuha is than cut by o surface of ores A whish vemrecants o
non-perfect contact between two members such that A, and A, remain
isothermal surfaces, the thermal contact resistance is by definition
(see also Figure 2.1)

2 - ‘_Ti - 13 | ) 'Tl - Te‘ (2.2)
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a non-perfect perfect contact
interface of . over area Aa
area Aa




Aa. is referred to as the apperent contact area. In many cases a simpler

expression for the thermal contact resistance is employed which is:

B
R = q

3

h

(2.3)

vhere q 1s the total rate of heat flow in the heat flow tube, AT is the

additional temperature drop between isothermal surfaces A1 and A2 due to

the presence of the interface of area Aa and h is the interface conductance.

-—

Figure 2.1 A Stream Tube
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It is often referred to in the literature and is similar to the surface
coefficient of heat transfer employed in convection. The thermal contact

resistance is not a property and cannot be tabulated. The effect of an

interface is highly dependent on the thermal and physical boundary
conditions. Changes in the thermal boundary conditions can also vastly
effect the macroscopic conformity of the mating surfaces and consequently
the importance of the interface. These effects are discussed in greater
detail in Sections 3.6 and 4.2.

Heat is transferred cross an interface by three different modes:
(i) thermal radiation, (ii) interstitial conduction, and (iii) metal-to-
metal conduction. These three modes are not independent and all modes of
importance must be considered simultaneously. It can be easily shown
(see Ref. 1) that the contribution of thermal radiation is negligible
for metallic interfaces at realistic contact pressures. Furthermore,
interfaces in & vacuum enviromment are of primary interest in this
investigation; thus the absence of an interstitial material will be
initially assumed. An understanding of the effects of interstitial
materials is, of course, also of i@oﬂme ; therefore this problem will
be considered after the analysis of the metal-to-metal conduction mode
is given. It is logical to consider the simpler, single mode problem

before the more complicated case of two interdependent modes.



3.0 A Restrictive Theoretical Model for Prediction of Thermal Contact
Resistance

Assuming that the heat transferred across the interface by radiation
is negligible and that no interstitial materiel is present, heat can flow
across the interface only through the "points" of contact.

Geometrically flat, smooth surfaces are nonexistant. Real surfaces
are characterized by surface roughness, i.e., microscopic irregularities,
and flatness deviations, i.e., macroscopic irregularities. Even if an
isothermal member had & surface free of microscopic and macroscopic
irregularities, it would generally not remain in this condition if heat
vere flowing through it. An enlarged section of the interface formed by
two members in contact would reveal that a relatively small percentage of
the surface is in actual contact. When heat flows through an interface it
is constricted to these smell areas of contact. This constriction manifests

itself as a thermal contact resistance at the macroscopic level.
For the purpose of analysis, the epparent contact area was conceived

to be divided into two regions: the contact region and the noncontact regiom.

The noncontact region was defined as the portion of the interface which
contained few or no microscopic contact areas. The contact region, referred

to as the macroscopic contact area, is the portion of the interface where

tne aensity of the microcontacts is high. In the absence of a conducting
fluid, the flow of heat is first constricted to the macroscopic contact areas;
it is then further constricted to the microscopic contact areas within this
macroscoplc area; and finally it must flow through the surface films. Hence,
the total contact resistance for an interface in the absence of an interstitial
material such as air may be thought of as the sum of three resistances in
series: the macroscopic constriction resistance RL’ the microscopic con-

striction resistance Rs, and the film resistance Ro, i.e.,




R, = R +R +R . (3.1)

It will later be seen that the resistances in Equation (3.1) are not
independent. In fact, since a resistance can only be defined between
4 isotbermal planes, only the total contact resistance can be defined. The
} equation is suggested as a help in understanding the problem rather than
as an aid in the analysis. Each resistance in Equation (3.1) will now be
considered independently.

Microscopic Constriction Resistance

The models proposed in the literature invariably included the assumption
that the microscopic contact areas are uniformly distributed over the entire
apparent contact area. That is, they analyzed only the microscopic resistance.
Let us briefly consider the assumptions which were usually employed and the
type of expression which resulted.

It was generally assumed that: (i) the actusl areas of contact are
uniformly distributed over the entire apparent contact area; (ii) the actual
contact areas are all circuler and of identical radius, a_; (111) the
asperities deform plastically under the load P such that the average pressure
exerted between them equals the microhardness, H, i.e.,

P
As = i = N 'rra‘:; (3.2)

and (iv) the film resistance is negligible. With these assumptions the
theoretical expression for the interface conductance was shown to be [1]:
2 ag km ng

h = _ (3.3)
i g (x.) A




where g(xs) is a constriction alleviation factor. Roess [6] examined the
constriction resistance due to an isothermal circular spot of radius ‘'at’
which feeds heat into a coaxial right circular cylinder of radius 'b'. He
found the following expression:

glx) = 1 - 1.40925x + 0.29591x® + 0.05254x°? + 0.02105x7 + ...
(3.4)

in which x(= afb) is the constriction ratio. This same problem was solved
numerically by the author in order to remove the error caused by Roess!

approximation {see Section 3.1). By substituting (3.2) into (3.3) one obtains:

k
m

p&
¥E e, g(x)

h o= 2 (3.5)
n

The factor (0 <y < 1) was suggested by Holm [7] to account for the

elastic deformation between asperities.

The several models emplayed in the literature all led to expressions
similar to Equation (3.5), but little success was obtained with it in pre-
dicting the interface conductance. It is not believed, however, that one
could expect successful predictions for actual surfaces with the assumption
of a uniform distribution of the coniact arcagc--en sesnmntion far from
reality for engineering surfaces. The next qguestion which arises is: could
such an expression be employed if the condition of macroscopic conformity
vere satisfied? It is the opinion of the author that one could never
accurately estimate the microscopic resistance for an interface in a vacuum
in the absence of interstitial materials. The basis for statement follows.

The first difficult question which arises for interfaces in a vacuum




without an interstitial material is what is the "actual" comtact ares,
i.e., what is the effect of gaps of several angstroms or of a discontinuity
in the crystal lattice? Also, how important are thin oxide films? Can
electrons tunnel across these films and through small gaps? If a.material
is present which completely fills the interstitials, these difficulties
disappear and all gaps of several microinches or less can be considered as
a perfect contact for all practical purposes.

Another feature of thermal contacts which adds considerable complexity
to the microscopic model is the transient nature of thermal contacts. When-
ever the temperature level of one of the members is changed, relative motiom
between the contacting surfaces occurs. In addition several tests which were
performed revealed oscillation in the temperature drop across the interface.
A protuberance may be plastically deformed at the first encounter with its
mating surface; however, subsequent differential, lateral motion would cause
an increase in the contact area. Eventually the load may be borne entirely
by elastic deformation.

Finally an estimate of the size and number of microscopic contact arcecs
is required. Even if the total microscopic contact area is constant and
macroscopic irregularities are not present, the constriction resistance is
highly dependent on the number {or size) of the contact ercas. 7Thc curface
roughness values which are employed in the analysis of thermal contact
resistance should give greater weight to the large asperities. The averaze
slope of asperities is also of importance since the constriction ratio anc

the number of contact areas must be known. Profilemeter traces often misleed

one to believe that the asperities have large slopes due to the large verticse)

magnification relative to the horizontel magnification. In reality, asperity
slopes are ususlly small.
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Film Resistance

The magnitude and importance of the film resistance is algo hard to
predict for many of the same reasons that the microscopic constriction
resistance is difficult to estimate. The insulating effect of surface films
is known to cause severe disturbances in electrical contacts since their
electrical conductivity is vastly different than the base metal. However,
the thermal conductivities of the oxide and base metal are not vastly
different and consequently their importance is usually discounted. For
freshly machined joints in the presence of a conducting fluid, neglecting
film resistance is probably Jjustified; however, the heat flow through an
interface in a vacuum is confined to relatively small areas which results
in a large heat flux through these areas. Sufficiently thick films may
also prevent conduction across small gaps by the tunnel effect. Therefore
surface films could be of importance for interfaces in a vacuum environment.

With our present insufficient knowledge of the formation and growth
of f£ilms, their tenacity and ability to withstand load together with the
lack of adequate information on the nature of "actual" contact, & theoretical
estimation of their importance in thermal contact resistance cannot be mads.
It is felt that at the present time their influence can more easily be

agsessed experimentally.

Macroscopic Constriction Resistance

For the purpose of analysis, the macroscopic contact area was assumeid
to consist of a single circular contact area of radius a vwhose center
coincides with that of the apparent contact area which is a cirecle of
radius b_. (Cylindrical specimens 1" in diameter were employed in the

L
experimental study.) The size of the macroscopic contact area is governed



1

by the elastic deformation of the contacting members. The flatness deviation
or waviness which gives rise to this resistance was simulated by spherical
caps of radius r on the end surfaces of the cylindrical contacting members.
The length of the cylindrical contacting members, L, was agsumed to be large
compared with the radius, bL‘ The heat flux and the stress was assumed to
be uniform and normal to tbhe interface at a distance sufficiently removed
from the interface.

The flatness deviation for these spherical surfaces is:

b2

and the total equivalent flatness deviation is defined as dt = dl + 62.

It should be noted that the spherical model of the contacting surfaces
exaggerates the flatness deviation, i.e., the flatneass deviations over the
region where contact occurs under normal loads are small compared with the
total flatness deviation. ¥For this reason if the equation which is obtained
for the spherical model is to be used for the correlation of data for actual
engineering surfaces, the flatness deviation dt should probably be replaced
by four times the deviation that is measured. This point is discussed
further in Section 3.2.

The determination of the additional temperature drop due to the presence
of a constriction consists of two parts: (i) given the load, what is the
macroscopic contact area? and (ii) given the macroscopic contact area, what
is the constriction resistance? Once the constriction resistance is known,
the additional temperature drop due to the presence of the interface can be

easily calculated. For the model employed, it is sufficient to determine the
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constriction ratio X, for the solution of Part (i). This ratio was found
in terms of the apparent contact pressure Pys and the harmonic mean modulus

of elasicity Em as:

P L/b > 2.0
x = 1.285 [(-Ei) (39_-)} { 55} (3.7)
m t
P
The dimensionless group (EE) (é’-—) vas designated by y and called the
m t

elastic conformity modulus. It is a measure of the conformity of the mating
surfaces under load. Equation (3.7) is basically the Hertz solution. It
assumes elastic deformation between the contacting members (which is satisfied
in this problem) and further that the radius of the contact area is smsll
compared with the other dimensions of the region. This condition is satisfied
only for small values of xL.‘ In addition, Hertz solution cannot be employed
for geametries other than spherical or cylindrical ones. Section 3.2 gives
a discussion of an investigation under progress which is designed to eliminate
these severe restrictions.

The solution of Pert (ii) is similar to the miecroscopic problem. A

dimensionless constriction resistance will be defined as:

RA
K* = k”‘b 2 - AE’" (3.8)
L L
% 2l X%
vhich is equal to =y for the present geometry where km (= ————r

Bk )

the barmonic mean thermal conductivity. ALm may be interpreted as an
equivalent length of the contact resistance. Again employing Bpess' soluticn
(see Eq. 3.4) gives: S
k n g(x;)

-
by, 2%

R* =

= ¢ (y) (3.9)
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where

(2)(1.285 /3) {L/b > 2.0 } (3.98)

¢ N
8 = e )

Roess! approximate solution was found to be accurate for small wvalues
of X < 0.5 (%4 < 0.06). A more accurate solution to this problem is given
in Section 3.1 which relaxes the stringent condition on Equation (3.%a). It
is to be noted that the solution is valid for dissimilar metals in contact
only if the effects of thermal strain are negligible (see Ref. k).

It is seen that for the restrictive model being employed, the macroscopic
constriction resistance can be accurately calculated and all parameters
required for this calculation can be easily determined. Employing Equations
(3.5) and (3.9), estimates of the relative importance of the macroscopic and
microscopic constriction resistances were made in Reference 1. These results
indicated the macroscopic constriction resistance was several orders of
magnitude larger than the microscopic resistance; consequently, the micro-
scopic constriction resistence could be neglected. It is not felt that these -
results are unquestionable evidence of the lack of importance of microscopic
resistances because (i) the microscopic constriction resistance model is of
doubtful validity , (ii) the assumed values of unknown paremeters in the
microscopic model could be in error, and (iii) the importance of film
resistances has not been considered. On the other hand, it is believed thet
accurate estimates of thermal contact resistance in the absence of interstiti=
materials will only be possible for interfaces where microscopic resistances
play a minor role.

The experimental investigation reported in References 1 and 2 gives an

indiecstion of the relative importance of mic

=a on ———— e = =

ascopic and macrosc

—_ == =
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resistances. These results indicated that in the absence of thick surface
films the macroscopic constrictions have a commending influence for many
surfaces commonly encountered in engineering practice. The results are

briefly summarized in Section 4.1.

1

3.1 Extension of Roess' Analysis

The analysis of the thermal constriction problem performed by Roess
contained several assumptions which severely limits its usefulness. These
assumptions will be removed in the present analysis. Since the results which
follow' are applicable to both large scale and small scale resistances, the
subscripts will be dropped.

One region of the model being considered is shown in Figure 3.1. Only
one region is being employed for simplicity; consequently, the problem must
be chosen such that it is symmetrical with respect to the contact plane.
Symmetry is assured if the radii are identical and the lengths are identical.
(The lengths need not be the same if both Lllb and L2/b are greater than 1.)
The conductivities of the regions can be different. Because the flatness
deviation is several orders of magnitude smaller than the other dimensionms,
the boundary conditions which exist along the curved contact surface may be
imposed along the line z = 0. Assuming that a perfect contact exists over
the region of radius a, the following partial differential equation and

boundary conditions describe the temperature field:

el 1o

(3.20)

TI¥
+
¥ ¥
+
LI
o
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A Z T(r,O) = T°’
0rfa (3.10a)
.
- (r:o) = 0,
{
a<r<b (3.10p)
— p —>
- (b,z) = 0,
L
i : 0<z<lL (3.10¢c)
|
T(raL) = TL’
t
4 ; ‘ > r 0<r<b (3.104)
-a a
T = ™(r,z) This problem is a very formidable
Figure 3.1 one due to the mixed boundary con-

Finite Cylindrical Region dition at z = 0. The boundary is

isothermal for O <r < a, vhereas there is zero heat flux over the remainder
of the boundarjy, i.e., for a <r <b. The difficulty due to this mixed
boundary condition was circumvented by Roess [6] »vho found that a flux
distribution across the area O <r <a which was proportional to

(1 - r3/a®) -1/2 resulted in an approximately isothermal area unless the
constriction ratio x (= a/b) was near unity. In addition, Roess assumed
L/b was sufficiently large that the constriction resistance was independent
of L/fb (see Figure 3.1). With these additional assumptions he found the

constriction resistance was:

R(x) = ﬁlﬁk (3.11)
a

where
g(x) = 1 - 1.40925 x + 0.29591 x° + 0.05254 x° + 0.02105 x!

+ 0.0110T x° + ...
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and k is the thermal conductivity. This solution was employed in the analysis
given in [1]. The experimental data were then compared with the resulting
theoretical prediction.

Further analysis of this was deemed highly desirable since:

(1) Roess' solution failed is L/b <1. This region is probably the
post important one, especially in the study of thermal contact
fesistance problems connected with space vehicles where thin
Blates are often employed. Under such circumstances, small values
of L/b would be presenmt and the theoretical prediction of [1]
would no longer be applicable.

(i1) The theoretical solution of [1] which employed Roess' solution
predicted smaller values of the constriction resistance than the
experimental values if x was near unity. Part of this discrepancy
could be due to the failure of Roess' solution to apply, since his
assumed flux distribution is in error if x is near unity.

The problem described by equations 3.10 was solved numerically. The
Justification of a mumerical procedure, the details of the numerical techniques
including the appropriate difference relationships, and a detailed presentation
Ui Whe rosulte af these calculations are given in Ref. 5. For the readers'
convenience, the results are repeated in this report in Tables 3.1 and 3.2.
Tables 5.1 and 3.2 gives the dimensionless constriction resistance as defined
by Equation (5.8) and are the constriction resistance of one region only. The
data of Table 3.1 for the case of L/b > 0.8 were fitted with a fifth degree
least squares polynominal. The resulting equation is:

pe o AL gof0x) {L/b >088h} (3.12)

b .1 <X <




R* = AL/b
X
/b 167 .233% .30 .367 .33 500 .567 .633% .700 .767 .833
0.0 0 o} 0 o o} 0 o 0 0 o] o
L0667 1.680 0.906 .552 .360 .247 .17 JA22 .0856 .0589 .0389 .02
JA333 11 2.542 1,446 911 .6080 L4216 .2970 .210 L1460 .0990 0630 .03
«200 3,000 1.772 1.1%5 .7760 .5425 .38%0 .270 .1816 .1240 .0765 .
267 3.257 1.972 1.299 .8878 .6237 .h410 .3090 .2115 .1387 .0836 .0k
A 3.40k 2,169 1.452 1.006 .7105 .501% .3495 .2360 .1522 .0897 .O45
.6 3.597 2.258 1.526 1.063 .7523 .5306 .3680 .2470 .1575 .0919 .Ok5
.8 3.618 2.277 1.542 1.077 .7615 .5368 .3720 .2493 .1584 .0923 .0459
1.0 -e- 2,281 1.54% 1.080 .7636 .5380 .3728 .2498 .1585 .092k .OL6O
1.2 - ——— —— B (- S— 3729 e-- —— - -
3.625 2.28% 1l.545 1.080 764 539 373 .250 .159 .092% .OL6O
Table 3.1 The Dimensionless Constriction Resistance R¥
as a Function of x and L/b
R{(1/b) / R(L/b = =)
X
) 167  .233  .300 .367 .433 .500 .567 .633 .700 .767 .833
0 o} o} 0 0 0 0 0 0 o} 0 0
OG0T 400 U397 557 333 J32h 321 327 W32 370 421 .s02 .
1333 .703 .63 .590 .563 .553 .552 .56k .58k .&@3 .682 .765 .
«200 828 .77 o 719 .11 .71 724 TS L7800 .828 .8853
267 .889 .86 .8y .B12 .B16 .819 .829 .846 .B72 .905 .9uk4 !
R .965 .950 .90 .931 .931 .93%2 .936 945 .959 .97 984 ¢
.6 993 .989 .988 .985 .986 .986 .986 .989 .991 .995 .998
.8 998 .995 .999 .996 .998 .998 .999 .997 .998 .999 .998
Table 3.2 The Ratio R(L/b) / R(L/b = «) as a Function of x and L/b
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vhere
£(x) = [1.398386 - 7.4469T8 x + 19.93028 x° - 38.58965 x°

+ 38.65529 x* - 16.62465 x°)

The dimensionless contact resistance for two similar regions in contact is:

re = 2(20°0%)) {L/b >-8 .814}

<X <

Thus, Equation (3.9) becomes

R* = ¢(x) {"532222’ < 01h} (3.13)
where

1/3
6 (g) = 2 {mf[l.aas(z )]}

and R* is based on the harmonic mean of the thermal conductivities of the
two regions.

Roess' solution was found to give good agreement with the numerical
resuiis for small velnes of x (< 0.5); therefore, no attempt was made to
obtain numerical results for x < 0.16. On the other hand, Roess' solution
diverged rapidly at larger values of x, and at x = 0.8 it was already in

error by approximately 30%.
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3.2 Extension of Hertz's A.nallsis

The flatness deviation in the proposed model was simulated by spherical
caps on the ends of the cylindricel regions. This model was ideal for
theoretical calculations since:

(1) The Hertz result could be employed in the calculation of the

macroscopic contact area. (Hertz solved the classical problem
of the determination of the contact area betﬁeen two spherical

bodies of radii r, and r. in elastic contact. The radius of

1 2
the contact was given by

1 -2 1-y3 4113
R e -

1/3
] / (3.14)

P b
= 1.285 1(=2) (L
x, = 1.265 [(Em) (dt)

which is the expression employed in Section 3.0.); and

(i1) Sphericel surfaces which were flat to within several millionth's
of an inch could be easily generated. The object of the
experimental study wes to determine if macroscopic effects
would be dominant even for surfaces which were almost optically
flat as was indicated from the estimations of the relative
importance of microscopic and macroscopic constriction resistances.
Also it was desired to determine if film resistances might be of
importance for these flat specimens. Since no other surface
geometry could be consistently generated with such swmall,

measurable values of flatness deviation, the spherical geometry

wa3 & necessity.



It is seen that an accurate theoretical calculation was possible for the
spherical model. This model also enabled one to further considerably the
understanding of the important parameters since a rather exact experimental
representation was possible; thus, it enabled a unified and systematic study
of the many perplexing phenomena associated with the thermal contact
resistance. Its usefulness and potential can perhaps be better realized
from the remainder of the report.

An extension of the results obtained by Hertz is highly desirable since:

(1) Hertz assumed that the dimensions of the bodies in contact were
large in comparison with the radius of the boundary of the
surface of contact; thus Equation (3.14) is not valid for large
values of x .

(ii) Bertz's solution is only valid for an isothermal region, i.e.,
thermoelagtic effects are neglected. Thus, & theoretical prediction
of the directional effect which is experienced in contacts between
dissimilar metals is not possible. (See Section 4.2 or Ref. k
for a discussion of the directional effect.)

(iii) Hertz's solution is valid only for contacts formed between
cylindrical or spherical members. Although a spherical model
was convenient for this basic analysis, it does not appear to
be the best geometry for the representation of the flatness
deviation which occurs for surfaces manufactured by various
production techniques.

(iv) If the prediction of the thermal contact resistance for interfaces
with an interstitiel material is to be made, the distance between

the contacting members in the non-contact region and the variation



of this distance with load must also be known. Previously

only the size of the contact area was required which could

be obtained from Hertz's solution. The need for this extension

can be appreciated by an examination of Section 3.4.

The éxtension of Hertz's solution is being investigated by R.0. McNary.

The study when completed will be his Ph.D. thesis. He has formulated the
problem in terms of displacement and is solving the resulting coupled
partial differential equations using a finite difference technique. This
work should be completed in several months at which time the details of this
analysis will be available. The numerical results which have been obtained
so far still contain appreciable numerical error; therefore they will not

be reported at this time.

3.3 The Interdependence of Microscopic and Macroscopic Resistances

In the study of the relative importance of the macroscopic and micro-
scoplc resistances it is of interest to know how the macroscopic and
microscopic resistances are interrelated. It is seen that they are not
independent since tbhe presence of a microscopic resistance would, of course,
affect the macroscopic temperature and flux distribution and consequently
the macroscopic constriction resistance.

The change in the macroscopic coastriction resistance, RL’ if a micro-
scopic resistance, Rs » 1s uniformly distributed over the macroscopic contact
was considered by Holm [7] and also was discussed in {1]. The limiting
situations were considered. BHolm suggested that if Rs is very large compared
with RL and is uniform over the macroscopic contact area, it followed that

the heat flux through the contact region is approximately uniform. He went

on to assume the flux was constant and determined the macroscopic constriction



resistance with this boundary condition. Although this boundary condition
is approximately true, it cennot be employed in the calculation of RL, a
secondary resistance.

A closer examination of the problem shows that if the two specimens have
the same radius bL and length L and if the distribution of the mieroscopic
resigtance is axially symmetric (it is not necessary to assume the distri-
bution is uniform), an isotbermal surface exists within the plane of contact.
The presence of the microscopic resistance over the boundary is analogous to
a convective type boundary condition with a finite surface conductance.* The
region shown in Figure 3.1 is again applicable. The differential equation
given by (3.10) and the boundary conditions given by (3.10b) - (3.104) apply;
hovever, the boundary condition which was previously given by Equation (3.10s)

now becomes:

+ k g-'f (r,0) = h[?(r,0) - Tol, 05rs ay (3.15)

vwhere h is a function of r if the microscopic resistance is not uniformly
distributed; otherwise, it is a constant. 'I'O is the temperature of the
isothermal surface in the contact plane. The contact resistance in this

cagse is given by:

*
The region of the microscopic resistance is assumed to be of negligible
‘thickness. Thie assumption is probably a valid one.
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vhere q 1s the rate of heat flow through the region. The relationship
between h and the mieroscopic resistance, Rs, will now be determined.
Consider two regions of different materials in contact. Assume a
known microscopic resistance is uniformly distributed across the macroscopic
contact area. (A non-uniform axially-symmetric distribution would add little
camplication; however, the results would be of less general value.) If one
is to consider only one region for the solution of this problem, it is
required that the flux distributions across the contact area of each region
are identical. From the differential equation and boundary condition it can
be seen that this will be the case if the microscopic resistance is

pertitioned such that

% ] ;z. (3.16)
Also
k_R 2
h = n':R; RY = mg:bl' and R, = Ry + R,
Therefore
R, = Ry 1k1
[1+=
k,
or
b, = h [1+§2- (3.17a)
and
b, = hs [1+%— (3.171)

With the convective type boundary condition Eq. (3.15), the Biot number,
h bL/k, enters into the solution. In terms of the above quantities, the

Biot number can be written as:
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b by 2 B by,
= = - (3.18)
K 2 p¥ 5
*L fs
vhere R: §s based on the summation of the microscopic resistances of both
regions.

It is therefore possible to find the total contact resistance between

any two mating materials separated by a small scale resistance, R ? by
finding the resistance of one region if the small scale resistance is
partitioned as described. The dimensionless contact resistance of both
regions will be the same if each is based on its respective thermal
conductivity. The total dimensionless contact resistance for two dissimilar

regions based on their harmonic mean conductivity then becomes:

* (R1+R2)kmAa RI R;
s Sy g

* *

ot 2R, = 2R (3.19)
The numerical procedure employed in Ref. 3 in obtaining the solution for

the case of negligible microscopic resistance was agein used. A difference

equation for the boundary 0S r = a is now required in addition to those

given in [3]. In terms of the nomenclature of [3], a general difference

equation valid for the grid points on this boundary is:

b
{ 3 ___—A-r‘ = Lomon * '1 - Ar\ m [ ..._.._..hl L {A___l“ T
L+ ar.) f1,400 7 € 2,57 Y 2ry’ “1,3-1 TS TE o o
h1 bI.« T
-4 b2 (4ry t o = 0 (3.20)
{ oy )T |

where the Biot number is given by Equation (3.18).

A series of numerical calculetions were made to determine the total
dimensionless contact resistance, R:t » Tor the problem as specified for
several values of Xy, and for several lengths. This solution was compared
with the result obtained by adding R: + R;. In these calculations, values
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* *
of Rs and X were assumed ; R vas obtained from (3.13).

Table 3.3 gives a comparison of these results. The values of all

resistances given in the tables are those of one region only; thus, the

total contact resistance, for example, for two contacting members is twice

the value given in the table. In examining the apparent trends in these

values it must be noted that no great effort was expended to remove minor

truncation errors since greater accuracy was unnecessary in drawing the

desired conclusions. Tables 3.4, 3.5, and 3.6 give the specific values

employed in obtaining Table 3.3.

The conclusions which can be drawn from these results are:

1.

The total contact resistance of an interface is always greater
than the value obtained by assuming R: and R; are independent
resistances in series.
*

The error committed by assuming that Rs and R: are independent

* *
and that the total contact resistance is simply (Fé + RL) is
smell in all cases and, considering the nature of the problem,
could easily be neglected.
Thi jshes 1f R >> R 1f R >> R,

S error vanishes s RL or RL s°

* *
The appesent mocrosconic constriction resistance (Rct - Rs), in
the presence of microscopic resistances can differ widely from

*
the value obtained when Rs is equal to zero.




»
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Table 3.3 Dimensionless Ratio [—*-—c-?—-—-—]

*
i AR
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200 1.0405 1.03T72 1.070%

.600 1.0454 1.0621 1.0925

1.00 1.0458 1.06k1 1.0891
*é:‘ .200 1.0076 1.0078 1.021h4
~ | .600 1.0112 1.0163 1.0366
*"a 1.00 1.0125 1.0366
-
* 3 200 1.0466 1.0377 1.0842
-] .600 1.0471 1.0520 1.0924
]

Table 3.4  Comparisons for R: ~ R;

b X
NG .233 .500 833
R: = 2.281 R: = .5380 R: = .0k60
* * *
.200 = 1.T72 = .38% = gg
RI_' 5,053 " L9210 " . 0867
v\* = )L A b* - fe1 <% 1 R* = 0928
I‘ct— ""QC-L(' ‘“Gt- T Cco hd .
R: = 2.281 a: = .5380 n: = .0L60
.600 R = 2.258 * o .5%6 * . .0u59
RI_' 5% " 1,0686 &’ 0919
R:t.—. b.74S R:te 1.135 R:t= .1004
» * *
RB = 20281 Rs = ossm Rs = .m
* * k-
1.00 = 2.281 = .5380 = 0460
% . g 1.07 &) .0920
* * *
R,= 4771 R,y= 1.145 Ry= 1002




Teble 3.5 Comparison for R, & 10 R}
Lo\ 233 .500 .833
L

- * . . *‘ *
R, = 22.310 R, = 5.380 R, = 4590
.200 * 1R *_ .33% ¥ .0hoT
Ri 5 it T % LT gk
Ry = 2477 R:t= 5.808 R:t= .5104
R: = 22.81 R: = 5.380 R: = 4590
.600 ¥ < 2,058 ¥ - .5%06 ¥ . .05
L 25,058 g 5.9106 g . 5049
R:t= 25.35 R:ta 6.007 R:t= .5234
R: = 5.380 R: = 1590
1.00 * < .538 * - .0k60
"L 5.918 L ~5050

* *
R = 5.992 Ryy= +5235

Table 3.6 Comparisons for R: = 0.2 R
AN .233 .500 .833

R: = Jlsée R: = .1076 R: = .0092

* * *
.200 = 1.772 = 3830 = .0k07
RL Z.2202 RL +4900 RL 0499
R:t= 2.332 Ry= 5091 Ry,= -O541
R: = .hs6e R: = .1076 R: = .0092
.600 ¥ _ 2.258 ¥ .5%06 * - L0459
"L 2.71k2 " .6385 "L .0552
R:t = 2,842 R:ta. 6714 R:t= .060%
R = .1076 R* - .0092

8 8
1.00 * . .5380 * e 046D
T s T s

* *
Rctg -6800 Rct= .0600
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3.4 Extension of Model to Include an Interstitial Substance

The investigation has been centered in the past on the study of clean

interfaces in vacuum environments. This approach was logical since:

1.

3-

The metal-to-metal conduction mode of heat transfer across an
interface is the most fundamental. Without a thorough under-
standing of the metal-to-metal conduction mode, incorrect
conclusions could easily be drawn from experimental measure-
ments of interfacial resistances for the combined mode case.
The problem is of greater importance in the absence of inter-
stitial conduction since the contact resistance is then much
larger.

The ability to predict the magnitude of the contact resistance
was poorest for interfaces in vacuum enviromments and the need

to know these values was most urgent in this area.

It is felt, however, that a parallel effort on the study of interfaces

with the addition of the interstitial conduction mode would be profitable

since:

1.

2.

The experience which has been gained should prove to be a
tremendous asset in the analysis of this closely allied problem.
This study might reveal reliable methods of decreasing the
magnitude of the thermal contact resistance in a vacuum
environment. For example, it could lead to more successful
theoretical predictions by giving a method of insuring the

lack of importance of microscopic resistances which are,

of course, 4ifficult tc predict.



3. The study should prove worthwhile in its own right for the
following reasons. First, the problem is of interest and
importance in other environments as, for example, in nuclear
reactor cores, atmospheric operation and testing of space
vehicles, etc. Second, satisfactory materials may be developed
or may already exist for employment as interstitial substances
in vacuum enviromments for both short and long duration flights.
Third, a better understanding of the nature of contacting surfaces
and the thermal contact resistance could be obtained from the
existing data for interfaces in air if a suitable model were
available for the analysis of these data.

The formulation of the problem and a discussion of the solution procedure

and results follow.

3.k.1 Problem Formulation and Results of Numerical Calculations

Since the slope of irregularities is usually small, the shape of the
irregularities did not enter into the calculation of the thermal contact
resistance, in the absence of an interstitial materiesl after the contacting
areas were determined. Most of the available models for the determination
of the microscopic contact areas are even independent of the asperity shape.
The simulation of the flatness deviation by spherical surfaces was employed
only as a means of predicting the macroscopic contact area. The distance
between the surfaces in the non-contact regions was inconsequential. On
the other hand, the shape of the irregularities becomes of primary importance
vhen a substance in the interstices provides a path for the flow of heat

acroes the non-contact regions.




The analysis which follows is valid for either a microscopic or

macroscopic protuberance. The essumptions are:

(1) The regions in contact are cylinders of identical radius b;
thus, for the microscopic problem a uniform distribution of
contact areas is assumed where the region feeding each contact
can be approximated by a cylindrical region of radius b.

(i1) The interstitial substance can be treated as a homogeneous,
isotropic continuum which completely fills the interstices.
The conductivity of this substance is independent of its
temperature.
(1i1) Natural convection within the interstices is negligible (due
to their small dimensions) and conduction within the interstices
in a direection parallel to the interface is also negligible.
(iv) The contect is axially symmetrical. The total distance between
the contacting surfaces is ft(p,r) (0 < r<b). This distance
is a function of the initial geometry, the apparent contact
pressure, p, and the radial coordinate r. The effect of thermal
strain is being neglected but could sometimes be of importance
for dissimilar mctals in contact (see Ref. 4).
The present problem is seen to be of the same nature at that presented

k
£
in Section 3.3. The microscopic conductance bs now becomes rACED] where

p,T
kf is the thermal conductivity of the interstitial substance.t Boundary
condition (3.10b) is no longer applicable since the interstitial material
provides a conductive path over the complete apparent contact area. The
following boundary condition now applies over the emtire apparent contact

area:
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X g’:- = h(T - 'I'o), 05 r =b ) (3.21)

Again, in order to analyze a single region, the interstitial substance must
be correctly partitioned. Due to the symmetrical nature of the problem, an
isothermal surface exists within the contact. Its temperature is denoted

as T . The Biot number arises from the boundary condition (3.21). When the
interstitial material is correctly partitioned, the Biot numbers of both of

the single region problems must be equal and are given by:

nb  npd X
S t(pfr) [1‘1 k.z (5.22)

Again the dimensionless contact resistance of both regions will be the same
if each is based on its own conductivity. The total dimensionless contact
resistance of two dissimilar regions based on their harmonic mean thermal
conductivity is simply B:t =2 RI = 2 R;. If the contact were perfect over
e portion of the apparent contact area, ft(p,r) would be zero over this
region. Therefore, h would become infinite end the boundary condition (3.21)
would simply become an isothermal boundary condition at temperature, To.

Bxomining the boundary coudition (3.21) or the appropriate difTerence
equation (3.20), it is seen that an additional parameter enters into the
analysis. This quantity follows from Equation (3,22) as:

A’ SRS R PR,
R k, 57

P N
or intrcducing dimensionless gui



b,b ke p  _»
_k_l = 2-1;; 'a; ft(z, I'*) (3-23)

Thus, for a given geometry, an additional dimensionless parameter arises.
It is (kf/km)(b/dt) and is essentially a Biot number. It will be referred
to as the dimensionless interstitial conductance, V¥ . It pepresents a
ratio of the conductance of the interstitial substance to the conductance

of the internal path, i.e.,

k k, A/d
T b Tt t
v = (P = (5.24)
m Ot k_ A/b
1)
The dimensionless constriction resistance thus becomes a function of
*
R, = &%, V) (3.25)

Large values of y correspond to a large contribution from the interstitial
substance. ¢ = O corresponds to the absence of an interstitial substance,
and Equation (3.25) reduces to Equation (3.13), i.e., Ry = &(%,0) = $(%).
The solution procedure for this problem is essentially the same as that
£or the problem of Section 3.3. The difference equation (3.20) is again
applicable. In order to obtain the required Biot number, the function
f:(!;,r*) must be known. In general, this would require the completion of
the extensions to Hertz's analysis which were entertained in Section 3.2.
Since these extensions bave not been completed, an approximation for this
function will be employed. First the case of zero load will be considered
since in this case an approximation is not reguired. The snalysis and most

of the results presented in this section can be employed in the calculation
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of either microscopic or macroscopic resistances.

At zero load, the contact resistance given by Eqaution (3.9) is infinite.
Consider now the maximum resistance of such an interface in the presence of
an interstitial conductor. Two geometries will be considered--a spherical
model and a conical model. An actual microscopic or macroscopic protuberance
would probably give a conductance which lies somewhere between the values for
these two geometries. For these models the dimensionless distance between

the surfaces ft(o,r*)/dt is given by:

f:(o,r*) < r*z, spherical (3.26a)

fi(o,r") = r¥, confcal (3.26b)

The numerical results are presented in figures 3.2 and 3.5. The
dimensionless contact resistance which is given represents the total contact
resistance for two regions. Some of the curves vhich are given are not for
x equal to zero; thus, they represent the results for finite loads. The
following assumptions were made in order to obtain these results:

(1) Perfect contact exists over the area 0 < r* < x; thus, the
boundary condition for this region reduces to an isothermal
boundary condition since the Biot number is infinite. If one
is concerned with macroscopic resistances, this assumption
is equivalent to neglecting the microscopic resistances. The
assumption for this case is justified in Section 3.4.2.

(i1i) Since the variation in the distance between the surfaces with

load is unknown, it was assumed that

f*( &,r*) = (r*-x), =x< 21 (3.27)
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FIG. 3.2 THE INFLUENCE OF INTERSTITIAL
CONDUCTION ON THF CNANTAQT DECICTANMALC
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where x is a function of the load; hence it is a function

of y. Equetion (3.27) probably gives values of resistances

which are too large.
Employing Equation 3.7 to relate the constriction ratio to the load, the
results given in Figure 3.4 were obtained. These curves show the variation
of the dimensionless constriction resistance with the elastic conformity
modulus. The values of the dimensionless interstitial conductance which
are given as a parameter cover a range which is thought to be of interest
in the study of thermal contact resistances arising from macroscopic
irregularities. The results are by no means complete; however, they do
clearly indicate:

(1) The significance of the dimensionless interstitial conductance
v £ 2
ky 4y

(ii) The large reduction in the thermal contact which can arise with
the introduction of an interstitial substance even if it is a
poor conductor such as air.

(ii1i) That one cemnot assume the metal-to-metal conduction and the

interstitial conduction modes are independent.

=
Y-
<

N

A larpe error can reasnlt if one employs the average distance
between the surfaces in calculating the contribution of
interstitial conduction even at zero load.

(v) At zero load the average resistance for the conical geometry
is approximetely 1.5 times larger than the resistance of the

spherical model for the range of V¥ which was investigated.
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FIG. 3.4 THE INFLUENCE OF LOAD ON THE
CONTACT RESISTANCE




3.4.2 Relative Importance of Microscopic Resistances

In the presence of an interstitial conductor, thin surface films appear
to offer negligible resistance relative to the constriction resistances. This
is because the thermal conductivity of most oxides is not vastly different
than the base metal and the thickness of such films is generally small. When
an interstitial conductor is present, the flow of heat is no longer confined
to the small points of metallic contact; hence thin surface films can be
neglected.

In order to compare the nagnitude of the resistance caused by a micro-
scopic protuberance with that caused by a macroscopic protuberance one must
first determine the ratios of b/ dt for the two cases. The calculation of
bL/ dtL is rather straightforward; however, it is more difficult to arrive
at this quantity for the microscopic roughness.

If one carefully considers profilimeter traces of surface roughness and

takes into account the greater magnification in the vertical direction, one

sees that the slopes of asperities are not large. The ratio of their base
to height is really large in most cases. A limited study of such traces
indicates that 2 <b8/dts < 80.

Employing realistic values of flatness deviation and a ratio of kf/km
corresponding to air and aluminum or stainless steel, Figure 3.3 shows that
the dimensionless resistance due to a microscopic protuberance eould be as
much as an order of magnitude greater than the value for a macroscopic

*

protuberance. Now consider the definition of R:t: Rc £ =

ALm is the length of material of thermal conductivity km whose resistance is

AL m/b where

equivalent to that of the contact resistance. It is a convenient quantity In

R . .. o " *
this comparison. It is seex that AL = P‘:t b; thus, slthough R, is larger
for a microscopic protuberance, ALms<< ALmL because bs << bL . Calculations

have shown that neglecting the microscopic constriction resistance could

cause an error of one percent and in most cases the error is even smaller.



3.5 The Influence of the Region Geometry on the Constriction Resistance--
Plane Gecmetry

3.5.1 Problem Formulation and Results of Numerical Calculations

It is usually assumed that the contact areas which are formed between
contacting bodies are circular in nature. For this reason most of the effort
expended in the calculation of constriction resistances was concentrated on
circular contact areas. The most formidable of these problems is probably
that of the finite cylindrical region. This problem was solved by numerical
calculations and the results of these calculations were reported in Section
3.2. Interest was recently expressed in two-dimensional plane constrictions
{8]. Since the numerical solution procedure recently developed for the
axially-symmetrical case was easily modified to the plane problem, it sgemed
worthwhile to repeat these caleulations for the plane case.

The region under consideration is shown in Figure 3.5. The governing

differential equation and boundary conditions are:

fr &, (5.28a)
ayz 522

Tz
™(y,L) = T b<y<b -
’ U= Ts T (3.28)

| i A
§2 (ib,z) = 0, 0<z<L (3.28¢)
v — 3 |
L
-h < < o
| & (y,0) = 0, PS¥S-e
2 aly=<s b
-a +a (3.28q)
\+ 4
>
| Ml N) _ m e - -~
=\J ¥/ - "o} e J <>
Figure 3.5 :




A differencing procedure similar to that used in [3] was employed in

the numerical solution of these equations.

The schemes used to speed

convergence of the iteration proecdure were also similar. The grid network

employed is shown in Figure 3.6. Equal increments were used in the y and z

directions. A coarse network was used away from the interface and a fine

network was employed near the interface.

triangular elements.

Az

£3=L

(n,1)

(x,1) \\/\‘\ \

1/

(1,1)

These networks were Joined with

(n,m)

(k,m)

(1,m)

Figure 3.6

v



5}

Since in the particular solution procedure which was employed, solutions
were obtained for two different spacial increments ,** an estimate of the
truncation error was possible. The error was estimated to be several percent,
vhich is of relatively little importance for a problem of the nature of
thermal contact resistance. The exact solution which was later obtained
for the limiting case of L>> b showed that the average error was approxi-
mately 2%. Since this small error was of little concern, all the numerical
computations could be carried out in approximately 8 minutes of production
time on the 7094 digitel computer.

The results obtained from the numerical solution are reported in
Table 3.7. The dimensionless constriction resistance is again employed,

R* =Rk Aa/b. It is noted that the dimensionless resistance is independent
of the depth of the region since R is inversely proportional to the depth.
The resistance given in the table is the conmstriction resistance of one
region only. For two plane regions of the same width and length the total
dimensionless resistance is twice the value given in the table. Table 3.8
shows the variation of the ratio R*(L/b)/R*(L/b = ») with x and L/b. Follow-
ing the procedures employed for the axially symmetrical case, extensions to
include an interstitial substance or the presence of microscopic resistances

over the contact area can be easily made.

H%
3.5.2 Exact Solution for the Case of L>> b

Constriction resistance problems are formidable ones due to the presence
of the mixed boundary condition along the boundary forming the plane of

contact. The boundary is isothermal over the contact area and is a zero flux

**17 and 49 columns were employed in the two solutions. The first solution
was used as an initial approximation for the second.

¥¥%¥The nomenclature in this section was chosen to conform with standard complex
variasble nomenclature; consequently, there are several minor conflicts with
that employed elsewhere. The complex variables used are: z = X + iy; 2° =
x' + iy'; 2" = x" iy" and w = u + iv; therefore, a/b is now used for the
constriction ratio instead of the letter X which was previously employed.
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surface over the remainder of the plane of contact. This suggests that one

apply conformal mapping techniques to try to eliminate this mixed boundary
condition. These techniques, of course, have only been successfully employed
for plane regions; therefore, these methods of solution were not possible for
the axially symmetrical case studied in [3].

The boundary conditions of the types given by equations (3.28b) through
(3.28e) are invariant with a change of variables arising from a conformal trans-
formation. Therefore the new form of the boundaries is of primary interest.
According to Ref. [9] the transformation z' = sin z transforms the semi-
infinite strip into the upper half of the z! plane as shown in Figure 3.7.

Two more successive transformations are then applied. The first one

z" = 2'/sin z is a simple magnification by the factor 1/sin a. This allows
the use of the transformation w = sin‘l 2", which is the inverse of the
initia}) transformation. It transforms the upper half of the 2" plare into a
semi-infinite strip. It is seen that the initial geometry is again obtained,
hovever, the mixed boundary condition has been removed. The successive trans-
Tormations which were employed are clearly indicated in Figure 3.7.

The temperature distribution in the w ©plane is easily seen to be:

T o= T -—‘!l'?v (3.29)

o

where gt ig the rata of heat flouw ner nnit

enth. Ta nhtain the solution

of the original problem, v must be determined as a function of the original
variables x and y.
Consider first going from T as a function of v to T as & function of

x" and y". The transformation is

"

z = sinw = sinucosh v+ icos usinhv

Therefore

n2

(13-4
= + —L— =1 (3.30)
cosh? v sinh? v
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Fig. 3.7 Successive Transformations Employed




Equation (3.30) shows that the isotherms in the 2" plane are ellipses

4
whose centers are at the origin and the foci are at y" = 0, x" - 1. From
the definition of an ellipse it follows that:

2coshv = [(x"+1)2+ y"2]1/2 + [(x" -1)2+ y"211/2

v = 3o [Y+ (¥2 - 1)¥?

where:
Y = %{[(x" + 1)2 + yn2]1/2 + [(xn - 1)2 + yn2]l/2}
Also:
< = sin x cosh y and v o= cos x sinh ¥
sin rs sin r a
2 b 5 b

therefore, in terms of the original variables the temperature distribution is:

T - ¢ -2 {Jn[Y+(Y2-l)1/2]}
Tk

o
where
2
Y = -——-l——f-—-; {[(sin x cosh y + sin g—%) + cos® x sinh® y]]"/2
2 sin 2 5

o -
+ [(sin x cosh y - sin =2)" 4 cos? x sinh® y]l/2
2b

The constriction resistance is of main interest. It can be obtained by

considering a value of y = y_ vhich is sufficiently large such that the

temperature is independent of x. The constriction resistance is then given

T o
VY e




k6

If y is very large,

o Tk
end
Y cosh y
sin EE
2b
Therefoge:

(3.34)

Equation (3.34) is valid for all possible values of the constriction ratio,

a/b; however, it fails to apply if L/b <1 as can be seen from the numerical

results given in Table 3.8. Tsable 3.9 compares the exaet solution with the .

numerical results.

R
; :

x=4a/b {.156 |.219 | .281 |.344 i,b06 : .469 rr.531 .59% i .656 |.719 |.78: |.84kh
Exact - ]
Solution |}.901 |.693 | .541 |.k24 {.330 | .253 | .1909; .1395| .0977| .0643|.0383| .010k
(Eq. 28)

Numerical

{rable 5) |l.9211 |.700 | .547 |.k28 |.334 |.257 | .1939] .1k2 | .0997| .0657| .0395} .0202
Percentage

Differencelil.2 1 {11 (.9 1.2 {1.6 {1.5 [1.8 [2.1 |2.2 {3.1 L

Teble 3.9 Comparison between Exact and Numerical Solutions
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4.0 Experimental Facilities and Results

Reference 1l gives a detalled discussion of the experimental facility
which was employed in the experimental studies. This reference gives
detailed descriptions of: (i) the method which was devised to satisfactorily
mount the thermocouples, (ii) the method of preparing the test surfaces and
determining their characteristics, end (iii) the procedure employed in the
execution of the experimental tests. Reference 2 also gives a brief
description of the experimental apparatus and procedure; thus these
descriptions will not be repeated in this report. However a brief dis-
cussion of the data reduction program which was later written follows and
the modifications incorporated in the new experimental facility are given
in Section k.3. |

The reduction of the experimental data was a tedicus task. The
potential accuracy could not be attained due to inherent limitations in
the data reduction process. For these reasons, the date reduction scheme
was programmed for the 7094 digital computer. Numerous refinements were
then incorporated which greatly reduced the error in the results. For
example, the thermocouple readings were corrected in order to remove the
curvature in the gradients as a consequence of the dspendsncs of the thormal
conductivities on the temperature and slight amounts of radiation heat losses.
A first degree least squares polynominal approximation was then employed to
determine the undisturbed temperature gradient from the corrected thermo-
coupld readings. This gradient was extrapolated to the test interface. From
these extrapolated gradients the additional temperature drop due to the

presence of the interface was determined. The differences between the



corrected thermocouple readings and the fitted curve were printed in order
to estimate the accuracy and detect the presence of constrictions or
erroneous readings. Numerous intermediate results were printed in order
to estimate the accuracy of the results.

It is believed that in this fashion high, consistent accuracy was
obtained. For example, in some of the low flux tests where high accuracy
was required, the thermocouple reedings differed from the fitted straight
line by less than 0.05 deg F. After all the data were reduced, summary
tables were printed and the results were automatically plotted in various

manners. The saving in time and labor was tremendous.

4.1 Experimental Verification of the Proposed Model

Extensive results were obtained for contacts between identical materials
in order to substantiate the validity of Equation (3.9) or (3.13) in predict-
ing the macroscopic constriction resistance. These results were reported in
detail in references 1 and 2. Figure 4.1 of this report summarizes these
findings. This figure gives a comparison between the theoretical curve,

Eq. (3.9), and the experimental results for all materials investigated.
It shows the excellent agreement vhich was obtained. It also demonstrates

the neafulness nf the Rint mumher and the elastic conformity modulus, ¥ .
in correlating thermal contact resistance data for materials covering wide
ranges of thermal conductivity, elastic modulus, flatness deviation and
load.

The experimental results showed some disagreement with theoretical
predictions for very small velues of flatness deviation. These surfaces vere

perhaps flatter than those of engineering interest, but the results did
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demonstrate that either the effects of thermel strain became important or
microscopic resistances were of importance. Many of the results which

are discussed in detail in Reference 1 seem to indicate that surface films
caused an appreciable resistance and consequently the failure of the
applicability of Equation 3.9. A more detailed study of the effects of thin
surface films should be made, since conclusive evidence of their importance

has not been estadblished.

4.2 An Experimental Study of Dissimilar Interfaces

Several investigations revealed that the thermal contact resistance is
influenced by the direction of heat flow in contacts between dissimilar
metals. Attempts made in the literature to explain this phenomenon fram a
microscopic approach were not successful. However, the experimental study
vhich the author conducted end which is reported in detail in Reference 4
showed that the proposed macroscopic model was capeble of qualitatively
explaining the phenomenon. Quantitative prediction was also possible if the
heat flow rates were small.

The expressions derived throughout Section 3 were generalized for
application to interfaces between dissimilar metals. However, it was also
stated that they were valid for dissimilar metals only if the effects of
thermal strains were negligible. The basis for this can be seen from the
following auguments.

It can be seen from Figure 4.2 that if heat is flowing from region 1 to
region 2, i.e., in the direction 1-2, the portion of region 1 near the
macroscopic contact area is cold relative to the rest of the member. Thus,

this portion contracts, which causes the formation of a larger macroscopic




/rI - small

_@_

Iy > 7y
CONTACT PLANE--SECTION A-A
a, = o)
GEOMETRY FOR FINITE
HEAT FLOW (T|> 7 ) ky - large
GEOMETRY FOR r o7
““““ ISOTHERMAL BODIES \2 <’
(¢g=0)
TN
Pa

FIG. 42 GEOMETRIC EFFECTS OF THERMAL
STRAIN RESULTING FROM A
MACROSCOPIC CONSTRICTION

51




52

contact area than that which is predicted if only the mechanical stresses are
considered (see Fig. 4.2). If the direction of heat flow is reversed, the
portion of region 1 near the macroscopic contact is hot relative to the
remainder of the member. In this case, the thermal strain causes & smaller
macroscopic contact area than that which is predicted from the mechanical
stresses. Thus, it is seen that if the heat is flowing in the direction 1-2,
the thermal strain causes a decrease in the macroscopic constriction
resistance, whereas if it is flowing in the direction 2-1, the thermal strain
causes an increase in the macroscopic constriction resistance. The thermal

contact resistance thus becomes a function of the direction of heat flow.

The geometry of the contacting members will obviously influence the size
of the macroscopic contact area and the manner in which the size of this area
varies with the mechanical load. However, the trend of the directional effect
is seen to be independent of the geometry of the contacting surfaces. For
example, consider the case when the heat is flowing in the direction 1-2.

The portion of region 1 near the macroscopic contact area will be cold
relative to the surrounding portion of the region. The thermal strain for
this case will cause the macroscopic contact area to grow whether the upper
contacting surface is concave or convex. (lhe lower surface could also he
either concave or convex.)

The amount of thermal strain which occurs is a function of the coefficient
of linear expansioﬁ a, the modulus of elasticity E, Poisson's ratio v, and
the magnitude of the temperature gradients. Thus the influence of thermal
strain is dependent'dn the heat flux and the thermal conductivity of the
material. If the heat flux is small and the thermal conductivity is large,

the influences of thermal strain would vanish.
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Now, consider a contact formed between two identical materials where
both the upper and lower regions have the same coefficient of linear
expansion. If the material properties are independent of temperature, the
thermal strains perpendicular to the interface which occur in the regions as
a consequence of macroscopic constrictions are complementary; thus, the
macroscopic contact area is aspproximately the same as that present in the
absence of thermal strain. Since the variation of the material properties
with temperature is not large, the neglect of the effect of thermal strain
due to macroscopic constrictions should not cause much discrepancy between
the theoretical predictions and the experimental results for contacts between
identical materials. Dependency of material properties on temperature will
not cause a directional effect in contacts between identical materials as
long as the specimen's geometries and the imposed boundary conditions are
identical.

The curves given in Figure 4.3 show the variation of the contect
resistance with heat flux at constant load for a stainless steel-aluminum
interface. The three curves given are for contact pressures of 44.6, 86.9,
and 157 psi. The arrows on the curves indicate the order in which the data
were tsken. It 1s seen in these figures that as the heat flux approaches
zero, the directional effect vanishes.

Although the thermal strain due to the macroscopic constriction seems to
dominate these experimental results, it is believed that another effect can
be seen--thermel strain due to the thermal environment. Small gradients in
a direction parallel to the plane of the interface can cause an appreciable

change in the macroscopic constriction resistance. Thege gradients in this
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cage arise from small amounts of radiant heat lost from the specimen's
surfaces. Other possibilities are heat exchange with the environment due
to the surrounding insulation , a surrounding gas, an alignment device, etc.
Many of these environments would be of greater significance than the small
amount of radiant heat loss from the highly palished surfaces in the present
investigation. The directional effect arises with dissimilar metals due to
changes in the temperature levels of the specimens with the direction of
heat flow. It is seen that this source of thermal strein may be beneficial
or detrimental depending on the original geometry of the surfaces and on the
sign of the radial heat flux. For the geometry employed in the present
investigation, the effect was alwgys detrimental since the specimens were
losing heat by radiation to the chamber walls in all cases.

It is believed that this effect can be detected in the data of Figure 4.3.
For example, the change in the dimensionless resistance R¥ with the rate of
heat flow gq; i.e., dR*/ dg, is either positive or negative depending on the
direction of heat flow; however, d°R'/dq2 is always positive. The fact thet
d°R*/aq® is always positive is probably due to the radiation heat losses.
Figﬁe 4.3 also shows that for the case when heat flowed from stainless steel
to aluminum, dR*/dq approached zero for large values of q. Ferliaps if g
vwere sufficlently large, the thermal strain due to heat losses would dominate,
and dR*/dq would be positive.

A comparison is given in Figure 4.3 between the experimental values
extrapolated to zero heat flow and the therceticel prediction of Equation
(2.13). The two values agree to within approximately 10%. This is believed

excellent considering the nature of the problem. It is seen that the
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theoretical predictions are larger than the experimentally measured
resistances. This is probably a consequence of an increase in the con-
formity of the specimens during the test series due to the creep of the
aluminum specimen. Flatness measurements taken after completion of the
test series showed the aluminum specimen had a "hole™ at the center portion
of its surface which was approximately 6 in. deep. Further data and

discussion of the directional effect is given in Reference k.

4.3 The New Experimental Facility

The experience gained from the use of the o0ld experimental facility
indicated several major improvements which could be made. In addition the
theoretical results suggested other aspects of the problem which should be
investigated; however, the old facility was not designed for these extensions.
Therefore, it was decided profiteble to design and construct a new experimental
facility. The main differences between this facility and the old one will be
described.

The old chamber was & cylinder with a 6 in. inner diameter and a height
of approximately 12 inches. Its small size proved to be a handicap especially
due to the pruidcms involved in changing and aligning the specimens. Its
size also made the addition of guerds virtually impossible. The new chambher
vas enlarged to an inner diemters of 12 in. and e height of 15-1/4 in. A
second cylindrical section of 8 in. inner diameter was inserted in the side
as is shown in Figure U4.4. The specimens can be easily changed by only
removing this one flange (see Figure 4.4). With this design the specimens

can be aligned accurately by band with nc need for an elsborate device and
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FIG. 4.4 GENERAL VIEW OF TEST CHAMBER
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no possibility of a thermal shunt due to the presence of such a device.

In chenging the specimens the sink and source can be left essentially in
place and their many connections need not be disturbed. A geperal view of
the complete facility is given in Figure 4.5.

The dead-weight loading system, a very desirable feature, was retained;
however, several modifications to the old design were incorporated to reduce
the effects of friction. The bushing around which the level arm rotated was
replaced by & roller bearing and the bushing which guided the loading pin was
replaced by a precision longitudinal bearing. Thus, the effects of frictional
loading which were found to be small in the o0ld design were virtually elimi-
nated in the new facility. The rectangular cross-section of the old lever
arm was changed to a T-section to reduce its laterial motion. The loading
system can be clearly seen in Figure 4.4.

Other changes were made to reduce the loading caused by the cooling water
lines and to reduce the heat losses. Guards were designed so that the
radiation heat loss could be eliminated or if the effects of such radial heat
flow were being studied, to ensble its control. These devices have not yet
been successfully employed.

Ths AC povwer source for the heating element was replaced by a well
regulated DC constent voltage supply. The voltage was varied by means of
a rheostat. Figure 4.6 gives a schematic diagram of the experimental

facility.
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5.0 Summary and Conclusions

A restrictive analysis based on & new macroscopic model was presented
for the prediction of the thermal contact resistance in a vacuum enviromment.
The thermal contact resistance was conceived to be a consequence of three
resistances in series: the macroscopic constriction resistance, the micro-
scopic constriction resistance, and the film resistance.

Preliminary calculations showed that the macroscopic resistance was
of major importance and the emphasis of the analysis and experimental study
was to further the understanding of thermal contact resistance by obtaining
a better understanding of macroscopic influences. The model was also extended
to include an interstitial substance.

The following mejor conclusions could be drawn based upon conditions
within the limits of this investigation:

1. Macroscopic influences are of major importance and dominate

the thermal contect resistance of a mejority of engineering
surfaces. This fact has been grossly overlooked in many
previous investigations.

2. An snalysis based on a model of macroscopic elastic contact

between mating members has been carried out, which makes possible
a satisfactory prediction of thermel contact resisiance whenever
the macroscopic constriction is dominating and the effects of
thermal strain are small. It naturally leads to a pair of
dimensionless parameters for correlating data. They are:

h bL
the Biot nodwlus: -
™

P b
the elastic conformity modulus: ¥ = (32)(32)
m t




T

L,

Experimental evidence is given to establish the validity

of the theory. The exteunsicn which incluies an interstitial

cozductor resulted in a third dimensicnless rarameter,

ke b

(D) -
1+

Evidence was given to demonstrate that thermel strain due to

the dimensionless interstizial conductance:

macroscopic influences can cause a prcnounced directional
effect in contacts between dissimilar metals. The proposed
model was found to be capable of predicting the thermal contact
resistance for interfaces between dissimilar metals if the
effects of thermal strain were not of importance which ig
often the case with small rates of heat flow.

Film resistance can be of considerable importance for heavily
oxidized surfaces in the absence of an interstitial substance;
however, it was found that for freshly machined surfaces with

a8 realistic value of flatness deviation, film resistance is of

secondary importance. The analysis which includes an interstitial

conductor shows that the effects of microscopic resistances can
surely be neglected (even with a poor interstitial conductor

such 2s 2ir) with realistic, freshly machined contacts.
h h
The model with its resulting dimensionless groups, % = »
k m
-1:) (ab-) » clearly indicates the effect of the
t

P
L

(SN ana (

By dy ko

many parameters and provides & means of designing high or low

resistance interfaces. It clearly indicetes both when

accurate predictions are possible and when accurate predictions

would be diificuit.
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The reduction in the contact resistance with the inclusion of an
interstitial substance is appreciable even with a poor inter-
stitial conductor such as air. The magnitude of (}—:f-)(a‘i—) clearly
indicates the importance of interstitial substa\ncesl? ¢

The macroscopic constriction resistance, the microscopic
constriction resistance, and the film resistance cannot be
calculated independently if more than one of these resistances
are important. Likewise, the interstitial conduction mode

and the metal-to-metal conduction mode cannot be calculated
independently. lastly, the macroscopic and microscopic contact
areas cannot, in general, be calculated without simultaneously

considering the thermal problem.



6.0 Recommendations for Future Extensions

The present investigation has porvided a better understanding of the
mechanism of thermal contact resistance. It has revealed the importance
of macroscopic effects and has been successful in predicting the thermal
contact resistance for the restrictive model being studied. As usual,
there still remein numerous extensions and refinements to be undertaken.

It is believed that the present model, the experimental results which were
obtained, and the numerical calculations which have been performed, will
provide a solid basis from which further studles can be effected. A few
recommended extensions follow.

Perhaps the most useful extension, especially to those who are involved
with thermal design, would be to attempt to employ the results of this study
to correlate the experimental results from other investigations for interfaces
with and without an interstitial conductor. This study has provided meaning-
ful dimensionless parameters for such a correlation and has revealed the
relative importance of many of the variables. If a more camplete study of
the characteristics of surfaces manufactured by various production processes
were made and these findings utilized to obtain the required parameters, the
model could perhaps be successiully sdsnted to this worthwhile endeavor.

This study hes provided a means of predicting the thermal contact
resistance when an interstitial substance is present; however, this aspect of
the theory has not been experimentally verified. An experimental study of
interfaces with an interstitial substance in the light of the present analysis
would be desirable. The investigation of substances such as lead foil or

other readily deformable materials might be inciuded in this experimental
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study. It would be interesting to learn if an interstitial substance
could be found which is suitable for extended employment in a vacuum
environment and at the same time is sufficiently well behaved such that
its influence could be accurately predicted.

Although all the results of the present investigation indicate that
the microscopic constriction resistances are not of importance, conclusive
evidence has not been obtained. Further experimental studies are necessary
to substantiate this conclusion. On the other hand, film resistance was
found to be of importance in some cases for interfaces in the absence of
an interstitial substance. Methods of reducing the film resistance should
be investigated. For example, plating the contacting surfaces with a noble
metal such as gold or silver may provide a means of reducing film resistance.

Another area which would be a logicael extension of this study would be
the investigation of the influences of constriction resistances in the
transient heat exchange between bodies. Preliminary calculations have shown
that the time required for two members to exchange a given amount of energy
with a non-perfect contact between them could easily be an order of magnitude
greater than the time required to exchange the same amount of energy with
rerfect contact.

Extensions to the deformation model to increase its range of applicability
and to include the effects of thermal strain were already discussed in Section
3.2 and, as was stated there, are partially completed.

The extensions which have been listed are but a few of the many interest-
ing probiems whick could be studied. They are presently thought to be some of

the more fruitful and worthbwhile endesavors.
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